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Abstract. The experimental conditions under which the intensity correlation function 
from a single atom undergoing resonance fluorescence may be observed are studied. As 
was pointed out by Jakeman et al, even under optimum conditions the number of 
fluctuations in the atomic beam prevent a direct observation of photon antibunching under 
the subsequent normalisation scheme used by Kimble et al. We show however that a 
direct observation of photon antibunching is possible in principle by adopting alternative 
normalisation schemes of the intensity correlation function. 

In a recent experiment Kimble et al (1977) have measured the second-order cor- 
relation function of the scattered light field in resonance fluorescence and report to 
have observed photon antibunching for the first time. The fact that the fluorescent 
light from a driven two-level atom would exhibit photon antibunching was first 
predicted by Carmichael and Walls (1976) whose predictions are in agreement with 
subsequent calculations of Kimble and Mandel (1976) and Cohen Tannoudji (1977). 
This effect is intimately connected with the quantum nature of the electromagnetic 
field and its observation would provide experimental evidence of aielectromagnetic 
field which cannot be described classically (Glauber 1964). However, the analysis of 
their experimental data by Kimble et a1 (1977) has been criticised by Jakeman et a1 
(1977) who claim the treatment of the background radiation is inadequate and further 
that the effect of fluctuations in the number of scattering atoms is omitted. 

In view of the basic importance of this experiment it is appropriate to analyse in 
some detail the results which one would expect in a realistic situation where the 
number of atoms in the scattering volume fluctuates and the background noise also 
contributes. In this Letter we compute the second-order correlation function of the 
scattered field taking into account both atomic number fluctuations and the back- 
ground noise. 

In an atomic beam experiment it is clear that the number of atoms in the scattering 
volume will fluctuate in time. Let us assume that there are N ( t )  atoms contributing 
independently to the fluorescent light at time t. The scattered field observed is then 
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where E&) is the scattered field from the ith atom and E is a time-independent term 
describing the scattered light from the background. For simplicity we assume first that 
the detection region A is smaller than an area of coherence A, (Born and Wolf 1970). 
Thus we may omit the spatial phase factors in the above sum. This restriction will be 
removed later on. Decomposing the field as usual into positive and negative 
frequency parts the second-order correlation function of the scattered field is 

G‘2’ (~)  = (E-(r)E-(r + r)E+(t + T)E+(r)) 

We assume that for times T of interest the number of atoms within the scattering 
volume remains constant (i.e. the atomic fluctuations occur on a much longer time 
scale than the field fluctuations): 

N ( t + T ) = N ( r ) = N .  (3) 

Under the conditions of the experiment there are no correlations between the field 
from different atoms and (&E&)) = 0. It is then readily shown that 

G”’(T)= N G ~ ’ ( T ) + N ( N -  l)[I; + IG$! ’ (T)~~]  + I E ~ ~ + ~ I ~ N I E ~ ~ + ~  Re(G!$(T))N1E12 

where 
(4 ) 

I* = (EYE:)  ( 5 )  

is the intensity from a single atom, and 

Gg)( r )  = ( E ;  (T)ET (0)) 

and 

G ~ ’ ( T ) =  (E;(O)E;(T)E:(T)E+(~)) (7 1 
are the single-atom first- and second-order correlation functions, respectively. Their 
analytic form is given explicitly in Carmichael and Walls (1976). 

The normalised correlation function is obtained by dividing by IG‘”(O)1* where 

IG“’(0)l =NI +\E)*. (8) 
However when accumulating data over a time T >> T one must average over the atomic 
number fluctuations. In an atomic beam the fluctuations in the number of atoms are 
well approximated by a Poisson distribution. The quantity measured in the experi- 
ment by Kimble er a1 is a subsequently normalised correlation function defined by 

where (-) represents the average over the Poisson distribution. From equations (4) 
and (8) using N(N - 1) = N 2  for a Poisson distribution we arrive at the result 
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where 1/S =IA/ leI2  is the signal to noise ratio for a single atom. If the observation 
region A is larger than a coherence area A,, the correlation function must be modified 
in order to account for the spatial averaging of the signal. Following the treatment of 
Jakeman et a1 (1970) and Jakeman (1974) we obtain 

1 (Igjdt’(T)12f(A) +z 2s Re(g$!’(r))fD(A)+p). 
(1 + s/Iq2 3(7)= 1 + 

f ( A )  and fD(A) are complicated functions given explicitly in Jakeman (1974). For our 
purposes it is sufficient to know that they are equal to one for A << A, and go to zero as 
1/A for A >>A,. The gg’(7) terms may be Doppler broadened due to the transverse 
component of atomic velocity introduced by the optical detection system. 

There are several points worth mentioning about this result. 
(1) The first term inside the brackets is a heterodyne term? resulting from the 

beating of light from different atoms. The second term arises from the heterodyning 
of the fluorescent light with the background light. The antibunching effect is 
contained in the third term, the single-atom correlation function divided by N, hence 
its contribution decreases as l/N, In the limit of zero noise and large 15 we recover 
the result of the central limit theorem (Carmichael and Walls 1976). In this limit the 
antibunching is lost, thus it is clear that one requires a low-density atomic beam to 
observe photon antibunching. The transition from small to large fi is displayed in 
figure 1 where we plot gk2)(T) for 8 = 0. 

1 I I I I I I I 
0 2 L 6 

Time delay 

Figure 1. Subsequently normalised intensity correlation function for A = 1, 2, 5 ,  1000, in 
the zero-noise limit. The delay time is in units of y-’, and the Rabi frequency is R = 25y .  

(2) We note that for a sufficiently small number of scatterers the intensity cor- 
relation function does not go to 1 as T + cy). Rather there is a residual background due 
to the fluctuations in the number of scatterers. This effect has been known for some 
time and has been observed experimentally by Schaefer and Berne (1972). 

t Alternatively this term may be seen as a beating of the signal with itself and called a homodyne term. 
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( 3 )  Since f ( A )  and fD(A) have approximately the same behaviour as a function of 
AIA,, the first and second terms in the bracket in equation (1 1) are always present or 
absent simultaneously. In other words the heterodyne terms become negligible for 
the same value of AIA,. The information presented in Kimble et a1 (1977) is 
insufficient to allow us to determine under what conditions their experiment was 
performed. 

(4) It is evident that by using an observation volume A >>A, one can eliminate 
these two heterodyne terms which serve to mask the antibunching effect. It is in this 
limit that the remarks of Jakeman et al (1977) are relevant. Since gg’(0) = 0 it is clear 
that p ( 0 )  = 1.  Thus, though a positive slope 

may be observed it is not possible to observe a z ( O ) <  1. Thus the photon anti- 
bunching character of the light may only be inferred since it is superposed on the 
Poissonian number fluctuations of the atoms. This is somewhat disappointing as it 
appears it would be impossible to make a direct measurement of photon antibunching 
in resonance fluorescence. 

We wish to suggest how this difficulty may be overcome by adopting alternative 
normalisations of the intensity correlation function G‘2’(~). The result of these alter- 
native normalisations is to reduce the effect of the atomic number fluctuations so that 
photon antibunching (i.e. g(*’(O)< 1) may be directly observed?. 

We turn now to a consideration of alternative normalisation schemes. We restrict 
ourselves to the situation A >>A, so that the heterodyne terms are absent. Let us first 
consider an ideal situation where we have a fixed total number of scatterers N. Then 
the normalised second-order correlation function is 

where we have used equations (4) and (8). Now consider the situation where we have 
a Poisson distribution of atoms in an atomic beam but measure the above normalised 
average during each transit time of the atoms. We must then average this indepen- 
dently normalised correlation function (Oliver 1974) over the Poisson distribution of 
the atoms. This yields 

This function possesses the advantage that the contribution due to atomic number 
fluctuations is considerably reduced so that a p ( O ) <  1 may in principle be observed. 
For example, in the low-noise case (lim 6 -+ 0), we obtain for I? = 1 

p(7)- 1 +0*5(gg’(~) -  1). (14) 

A plot of p ( 0 )  against for S = 0.25 is shown in figure 2. This does not exhaust the 
ways we may take the normalised averages. It is also possible in principle to take a 

t Alternatively it may be possible to reduce the effect of the fluctuations in the atomic number distribution 
by selecting the input data using a device such as a hot wire detector which provides information on the 
number of atoms present. 



Letter to the Editor L125 

J- 
0 1 2 3 i 5 6 

Fi 

Figure 2. Second-order correlation functions gi2’(0) (subsequent normalisation), gl’’(0) 
(independent normalisation), g&’(O) (partial independent normalisation), and gE’(0) 
(fixed number of scatterers), as a function of N, for a noise 6 = 0.25. 

partially independently normalised correlation function as follows: 

That is, the second-order correlation function is partially normalised by I G(”(0)I 
during each transit time. This function has the form 

Again this quantity has the property of reducing the contribution from the atomic 
number fluctuations. Indeed, it is superior in this respect to Z(T) as is shown in the 
plot of a(0) in figure 2. In the low-noise case (lim S -* 0), we obtain for = 1 

Z(T)= 1 +0*632(g2’(7)- 1). (17) 

Note also that independent normalisation offers the further advantage of removing 
some of the effects of laser drift. 

For comparison the subsequently normalised correlation function at 7 = 0 ( p ( 0 ) )  
and gc ’ (0 )  for a fixed number N of scatterers are also plotted in figure 2. 

In conclusion we have shown that the optimum experimental conditions to observe 
photon antibunching are such that the observation region is much larger than an area 
of coherence and the number of atoms in the observation region is very small 
(preferably &f 5 1). However as was pointed out by Jakeman er a1 (1977) even under 
these optimum conditions the effect of the atomic number fluctuations is such as to 
negate the possibility of observing a g‘2’(0)< 1 under the subsequent normalisation 
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scheme used by Kimble et a1 (1977). However we wish to draw attention to the 
possibility of measuring independently normalised correlation functions which reduce 
the effect of the atomic number fluctuations and in principle enable a direct obser- 
vation of photon antibunching (g"'(0)C 1) to be made. 

DFW wishes to thank Professor H Walther for his hospitality at the University of 
Munich, and also wishes to acknowledge informative discussions with Drs Jakeman, 
Pike, Pusey and Vaughan at the Royal Signals and Radar Establishment. 

Note added in proof. A formula equivalent to equation (Fl) has recently been derived 
by Kimble, Dagenais and Mandel (private communication) who have found excellent 
agreement with experiment. 
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